首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3994篇
  免费   627篇
  国内免费   704篇
  2024年   7篇
  2023年   113篇
  2022年   81篇
  2021年   128篇
  2020年   246篇
  2019年   252篇
  2018年   234篇
  2017年   212篇
  2016年   226篇
  2015年   212篇
  2014年   205篇
  2013年   277篇
  2012年   219篇
  2011年   217篇
  2010年   171篇
  2009年   232篇
  2008年   232篇
  2007年   219篇
  2006年   216篇
  2005年   175篇
  2004年   146篇
  2003年   128篇
  2002年   127篇
  2001年   95篇
  2000年   85篇
  1999年   68篇
  1998年   73篇
  1997年   51篇
  1996年   40篇
  1995年   51篇
  1994年   37篇
  1993年   37篇
  1992年   43篇
  1991年   30篇
  1990年   39篇
  1989年   31篇
  1988年   19篇
  1987年   35篇
  1986年   31篇
  1985年   29篇
  1984年   52篇
  1983年   44篇
  1982年   44篇
  1981年   23篇
  1980年   31篇
  1979年   19篇
  1978年   7篇
  1977年   8篇
  1976年   6篇
  1973年   10篇
排序方式: 共有5325条查询结果,搜索用时 921 毫秒
61.
Climate change has been unprecedented in the last half-century. Tree growth dynamics and responses to climate warming at different elevations vary by study area due to regional diversity in site-specific climatic conditions in the central Hengduan Mountains. A. georgei is the dominant species in high-elevation montane forests in the central Hengduan Mountains. To study the response of A. georgei radial growth to climate and identify tree growth trends at different elevations, tree-ring width chronologies at four elevations across the subalpine A. georgei forest belt were built and growth-climate relationships were analyzed. The primary findings of this study were as follows: (1) radial growth rates of A. georgei decreased with elevation; (2) warming alleviated the limitation of low temperatures and abundant precipitation on tree radial growth at the highest sampling site; and (3) unlike at other elevations, the trend of trees basal area increment (BAI) at the lowest sampling site showed a significant decline over the past 20 years. This suggests the presence of an elevational inflection point, likely between 3800 m and 4000 m, where tree growth trends diverge. These results confirmed that A. georgei at higher elevation in the central Hengduan Mountains currently benefits from higher temperatures. However, the effects of drought on A. georgei at lower elevations would cause radial growth to decrease with climate warming. Therefore, it is critical to establish effective management strategies based on how A. georgei responds to climate change at various elevations.  相似文献   
62.
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   
63.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   
64.
The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re-greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.  相似文献   
65.

Aim

One of the oldest and most powerful ways for ecologists to explain distinct biological communities is to invoke underlying environmental differences. But in hyper-diverse systems, which often display high species richness and low species abundance, these sorts of community comparisons are especially challenging. The classic view for Amazonian birds posits that riverine barriers and habitat specialization determine local and regional community composition. We test the tacit, complementary assumption that similar bird communities should therefore permeate uniform habitat between major rivers, regardless of distance.

Location

Upland (terra firme) rainforests of central Amazonia.

Methods

We conducted intensive whole-community surveys of birds in three pairs of 100-ha plots, separated by 40–60 km. We then used dissimilarity indices, cluster analysis, and ordination to characterize differences among the six avian communities.

Results

In all, we detected 244 forest-dependent birds, with an average of 190 species (78%) per plot. Species turnover was negligible, no unique indicator species were found among plot pairs, and all documented species were already known from a complete inventory at one of the three sites.

Main Conclusions

Our study corroborates the classic biogeographical pattern and suggests that turnover contributes little to regional avian diversity within upland forests. Using a grain size of 100 ha, this implies that upland birds perceive the environment as uniform, at least over distances of ~60 km. Therefore, to maximize both local species richness and population persistence, our findings support the conservation of very large tracts of upland rainforest. Our analyses also revealed that the avifauna at Reserva Ducke, encroached by urban sprawl from the city of Manaus, shows the hallmarks of a disturbed community, with fewer vulnerable insectivores. This defaunation signals that even an enormous preserve (10 × 10 km) in lowland Amazonia is not insulated from anthropogenic degradation within the surrounding landscape.  相似文献   
66.
Understanding the composition of urban wildlife communities is crucial to promote biodiversity, ecosystem function and links between nature and people. Using crowdsourced data from over five million eBird checklists, we examined the influence of urban characteristics on avian richness and function at 8443 sites within and across 137 global cities. Under half of the species from regional pools were recorded in cities, and we found a significant phylogenetic signal for urban tolerance. Site-level avian richness was positively influenced by the extent of open forest, cultivation and wetlands and avian functional diversity by wetlands. Functional diversity co-declined with richness, but groups including granivores and aquatic birds occurred even at species-poor sites. Cities in arid areas held a higher percentage of regional species richness. Our results indicate commonalities in the influence of habitat on richness and function, as well as lower niche availability, and phylogenetic diversity across the world's cities.  相似文献   
67.
68.
This study aimed to describe the change in the number of successful nests of the white-tailed eagle, Haliaeetus albicilla, for 25 years (1997–2021) along the Teshio River (100 km), Japan, which is a new habitat for this endangered species and identify factors driving the number of nests. The number of nests grew from two to nine. The logistic function fitted in well with the growth, and the capacity of the study area sustaining the successful nests was estimated at 6.5. The precipitation in January and April explained the deviation of the observed values from the model prediction. In particular, heavy rain in April was associated with low numbers. Forty-six nest remains were collected from 17 nest locations. Twelve genera of birds, six genera of mammals, and four genera of fishes were identified. Fish and bird items occupied 93.6% of prey individuals. The fish proportion was similar between high-performance years when the observed number of successful nests was higher than the model prediction and low-performance years with a lower number than the prediction (55.2% and 51.0%). However, it was higher in the nests with two fledglings (63.0%) than those with a single fledgling (41.5%). The nearest neighbor distance (NND) of the successful nests declined with the increase in the number of nests. Based on territory size (the mean NND = 7.8 km), the study area can hold 13 nests. The process and mechanism of the dynamics of the number of nests were discussed, focusing on territoriality and weather effects.  相似文献   
69.
70.

Aim

The exceptional turnover in biota with elevation and number of species coexisting at any elevation makes tropical mountains hotspots of biodiversity. However, understanding the historical processes through which species arising in geographical isolation (i.e. allopatry) assemble along the same mountain slope (i.e. sympatry) remains a major challenge. Multiple models have been proposed including (1) the sorting of already elevationally divergent species, (2) the displacement of elevation upon secondary contact, potentially followed by convergence, or (3) elevational conservatism, in which ancestral elevational ranges are retained. However, the relative contribution of these processes to generating patterns of elevational overlap and turnover is unknown.

Location

Tropical mountains of Central- and South-America.

Time Period

The last 12 myr.

Major Taxa Studied

Birds.

Methods

We collate a dataset of 165 avian sister pairs containing estimates of phylogenetic age, geographical and regional elevational range overlap. We develop a framework based on continuous-time Markov models to infer the relative frequency of different historical pathways in explaining present-day overlap and turnover of sympatric species along elevational gradients.

Results

We show that turnover of closely related bird species across elevation can predominantly be explained by displacement of elevation ranges upon contact (81%) rather than elevational divergence in allopatry (19%). In contrast, overlap along elevation gradients is primarily (88%) explained by conservatism of elevational ranges rather than displacement followed by elevational expansion (12%).

Main Conclusions

Bird communities across elevation gradients are assembled through a mix of processes, including the sorting, displacement and conservatism of species elevation ranges. The dominant role of conservatism in explaining co-occurrence of species on mountain slopes rejects more complex scenarios requiring displacement followed by expansion. The ability of closely related species to coexist without elevational divergence provides a direct and faster pathway to sympatry and helps explain the exceptional species richness of tropical mountains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号